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1 Introduction

knitr::opts_chunk$set(echo = TRUE)

1.1 The data
(Fictitious data)

ERP experiment

• 20 Subjects,
• 6 Channels: O1, O2, PO7, PO8, P7, P8
• Stimuli: pictures. Conditions:

– 1 (f): fear (face)
– 2 (h): happiness (face)
– 3 (d): disgust (face)
– 4 (n): neutral (face)
– 5 (o): object

• Measure: Area around the component P170

Setting parameters, importing the data:
rm(list=ls())
library(flip)
#
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# # example of files contents:
# # s01 NC P7 f -7.1121
# # s01 NC P7 h -7.2582
# # s01 NC P7 d -7.4540
# # s01 NC P7 n -5.6729
# # s01 NC P7 o -2.1812
# # s01 NC PO7 f -7.4169
#
#
# library(readr)
# library(dplyr)
#
# dati=lapply(datafiles, read_delim,col_names = FALSE ,delim = " ")
# dati=bind_rows(dati)
# str(dati)
# names(dati)=c("Subj","Group","Chan","Condition","Y")
#
# # Not used in this analysis
# dati$Group=NULL
# dati$Subj=factor(dati$Subj)
# dati$Chan=factor(dati$Chan)
# dati$Condition=factor(dati$Condition)
# str(dati)
# save(dati,file="datiEEG.Rdata")
#
# dati2=subset(dati,(Chan=="O1")&(Condition%in%c("f","n")))
# dati2$Condition=factor(dati2$Condition)
# save(dati2,file="dati2EEG.Rdata")
load("./dataset/datiEEG.Rdata")
load("./dataset/dati2EEG.Rdata")

# VERY IMPORTANT:
contrasts(dati$Chan) <- contr.sum(6)
contrasts(dati$Condition) <- contr.sum(5)
contrasts(dati$Subj) <- contr.sum(nlevels(dati$Subj))

contrasts(dati2$Condition) <- contr.sum(2)
contrasts(dati2$Subj) <- contr.sum(nlevels(dati2$Subj))

1.2 Motivation (EDA)
For Channel O1:
library(ggplot2)
p <- ggplot(subset(dati,Chan=="O1"),aes(Condition,Y))
p+geom_point(size = 3) +geom_boxplot(alpha=.1)
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Is there a specificity of the subject?
dati01=subset(dati,Chan=="O1")
library(ggplot2)
p <- ggplot(dati01,aes(Condition,Y))
p+geom_point(aes(group = Subj, colour = Subj))+

geom_line(aes(group = Subj, colour = Subj))+
geom_boxplot(alpha=.1)
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We subtract the subject-specific effect (i.e. subject’s mean) to each observation.
dati01=subset(dati,Chan=="O1")
Y=scale(matrix(dati01$Y,5),scale=FALSE)
dati01$Y=as.vector(Y)

library(ggplot2)
p <- ggplot(dati01,aes(Condition,Y))
p+geom_point(aes(group = Subj, colour = Subj))+

geom_line(aes(group = Subj, colour = Subj))+
geom_boxplot(alpha=.1)
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The dispersion of the data has been largely reduced. This effect is the one taken in account by the models for
repeated measures.

2 Two Paired samples and symmetry test
2.1 Definition
Let consider the reduced problem: channel Chan=="O1 and Condition=="n" or Condition=="f".

Let be y the outcome, x the condition/treatment (x ∈ {1 = ”f”, 2 = ”n”} in our case). Let be z = Subject
the nuisance factor in the stratified problem.

Under the null hypothesis: f(y|x = 1, z) = f(y|x = 2, z) = f(y|z)
while possibly (even under H0) ∃(z, z′) : f(y|x, z) ̸= f(y|x′, z′)

This imply that observations are exchangeable only within the same subject (z, i.e. playing the role of Strata).

In the gaussian-parametric approach we assume a different mean for each subject (i.e. Subject-specific effect),
but the variance is forced to be constant among subjects. Here we don’t make this assumption. This is much
more realistic (see discussion later).

2.2 Testing Symmetry
The test statistic is based on the mean difference T (y) =

∑n
i=1(yi2 − yi1)/n =

∑n
i=1 di/n

Since f(yi1) = f(y|x = 1, z = i) = f(y|x = 2, z = i) = f(yi2), di is symmetric.

Therefore, the null hypothesis is equivalentely written as:
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H0 : f(yi|xi = 1, zi) = f(yi|xi = 2, zi) ∀zi

=⇒ f(di) = f(−di) ∀zi

Permutantion within the observation i reduces to randomly flipping the sign of di. We test for symmetry.

REMARK The opposite implication is not always true: f(di) = f(−di) ⇏ f(yi|xi = 1, zi) = f(yi|xi =
2, zi) ∀zi; consider the important example of yi ∼ N(0, Σ(xi, zi)) (i.e. the variance depends on the levels of xi

and the subject zi). In this case (yi|xi = 1, zi) − (yi|xi = 2, zi) ∼ N(0, Σ(xi = 1, zi) + Σ(xi = 2, zi)) is still
(normal and therefore) symmetric! Therefore the assumption of symmetry of the difference is broader than
the assumption of exchangeability of observations within the same subject.

2.3 A bit of theory
(see also Pesarin, 2001; Hemerik & Goeman, 2017)

Let Y be data taking values in a sample space Y. Let Π be a finite set of transformations π : Y → Y, such
that Π is a group with respect to the operation of composition of transformations:

• it contains identity,
• every element has an inverse in the group,
• closure: if π1, π2 ∈ Π: π1 ◦ π2 ∈ Π

(e.g. Π set of all possible permutations)

Test statistic T (Y ) : Rn → R

H0: null hypothesis which implies that the joint distribution of the test statistics T (πY ), π ∈ Π, is invariant
under all transformations in Π of Y . That is, writing Π = {π1, . . . , π|Π|}, under H0:

T (π1Y ), . . . , T (π|Π|Y ) d= T (π1gY ), . . . , T (π|Π|gY )

for all g ∈ Π.

Note that it holds when for all π ∈ Π: Y
d= πY .

Orbit of O:
O = {πY : π ∈ Π} ⊆ Y

.

(losely) the set of all samples having the same likelihood under H0.

O = {πy : f(πy) = f(y)}

(|O| number of elements of O)

If we assume exchangeability of observations, then:

O = {all permutations of the observed data y} = {y∗ : π∗ ◦ y}

Remark: For Repeated Measures this means that, Under the Null Hypothesis, observations within subject
are assumed to be exchangeable: f(y1, y2) = f(y2, y1).

This assumption is always true as long as observations:

• are identically distributed (within the same subject),

• have the same dependence, e.g. the same correlation.
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t-test and linear models assumes independence, which is just a special case: (f(y1, y2) = f(y2)f(y1) =
f(y2, y1)), i.e. a more severe assumption!

paired t-test and repeated measures assumes homoscedasticity of the vector of differences (i.e. one difference
for each subject), here we only assume symmetry. Again, permutation approach makes less assumptions.

T (k)(Y ) ⌈(1 − α)|Π| ⌉-th sorted value of T (πY )

Theorem: Under H0, P (T (Y ) > T (k)) ≤ α.

intuition:

f(y∗|O) = f(y∗ ∩ O)
f(O) = f(y∗)

f(O) = f(y∗)
f(∪y∈Oy) = 1

|O|
∀ y∗ ∈ O

i.e. each permutation is equally likely in the Orbit O.

(due to group structure)
P (T (y) ≥ T (k)|y∗ ∈ O, H0) =

=
∫ +∞

T (k)
f(T (y))dT (y) =

=
∑
y∈O

I(T (y∗) ≥ T (y))/|O| ≤ α ∀O

2.3.1 Properties (see Pesarin, 2001)

The theorem above proves that the permutation tests have exact control of the type I error, i.e. P (p −
value ≤ α|H0) = α assuming α ∈ {1/|O|, 2/|O|, . . . , 1} - don’t forget that the orbit O is a finite set; if this is
not the case, the test is (slightly) conservative.

Further properties:

• The permutations tests are Unbiased: P (p − value ≤ α|H0) > α

• The test is Consistent: P (p − value ≤ α|H1) → 1 when n → ∞

• The test converge to the parametric counterpart (when it exists)

2.4 Results
The parametric paired t-test:
t.test(dati2$Y[dati2$Condition=="n"]-

dati2$Y[dati2$Condition=="f"])

##
## One Sample t-test
##
## data: dati2$Y[dati2$Condition == "n"] - dati2$Y[dati2$Condition == "f"]
## t = 3.287, df = 19, p-value = 0.003877
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 0.2303616 1.0380084
## sample estimates:
## mean of x
## 0.634185

The nonparametric one:
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flip(dati2$Y[dati2$Condition=="n"]-
dati2$Y[dati2$Condition=="f"],perms=10000)

##
## Test Stat tail p-value
## Y t 3.287 >< 0.0038
# Equivalent to
flip(Y~Condition,Strata=~Subj,data=dati2,perms=10000)

##
## Test Stat tail p-value
## Y t 3.287 >< 0.0038

3 Permutation-Based Repeated Measures ANOVA
3.1 Introduction
Let be y the outcome, x the condition/treatment (x ∈ (f, h, d, n, o) in our case). Let be z = Subject the
nuisance factor in a stratified problem.

Under the null hypothesis: f(y|x, z) = f(y|x′, z) = f(y|z) ∀(x, x′)
while possibly (even under H0) ∃(z, z′) : f(y|x, z) ̸= f(y|x′, z′)

This imply that observations are exchangeable only within the same subject (z).

In the gaussian-parametric approach we assume a different mean for each subject (i.e. Subject-specific effect),
but the variance is forced to be constant among subjects. Here we don’t make this assumption. This is much
more realistic (see discussion later).

3.2 One Linear model for each Subject
The following approach is developed in Basso & Finos (2012) and in Finos & Basso (2014). It is very similar
to (basically an extension of) the NonParametric Group level analysis developed in SnPM by Nichols and
Holmes (2001).

Assuming a hierarchical linear model we have a subject-specific linear model for each subject. The vector of
outcomes yi can be modeled as a linear function of the predictor

yi = β0i + β1ix1 + . . . + βkix2 + εi = Xβi + εi; i = 1 . . . , n

yi is a vector, X is a matrix of k predictors, εi is a vector of iid r.v.

Therefore: (β̂i|βi) ∼ (βi, Σi)

We also assume that βi ∼ (β, Ψ). Therefore we have that: β̂i ∼ (β, Ψ + Σi)

Let’s consider again the test on the effect of the Condition. The matrix of predictors X is the matrix of
k = C − 1 = 4 dummy variables. The null hypothesis becomes:

H0 : β = (β1, . . . , βk) = 0

The observations within the subject (i.e. stratum) are exchangeable under the null hypothesis. However, we
don’t have a separate (in the sense of Pesarin, 2001. This is often known as Subset Pivotality, WY, 1993) test
for H0 : β1 = 0 since we are permuting the observation under the global null hypothesis (i.e. values relative
to other conditions affect the estimate of β1).

The same problem rises if the matrix of X contains other factors, such as ChanL and Lateral. Let’s now
consider the experimental design modeled as a linear model with ChanL*Lateral*Condition.

Data preparation:
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dati$Lateral=dati$Chan
levels(dati$Lateral)

## [1] "O1" "O2" "P7" "P8" "PO7" "PO8"
levels(dati$Lateral)[c(1,3,5)]="Left"
levels(dati$Lateral)[-1]="Right"
levels(dati$Lateral)

## [1] "Left" "Right"
dati$ChanL=dati$Chan

# https://en.wikipedia.org/wiki/Regular_expression
# Digits: \d
levels(dati$ChanL)=gsub("\\d","",levels(dati$ChanL))

contrasts(dati$Condition)=NULL
contrasts(dati$ChanL)=NULL
contrasts(dati$Lateral)=NULL

We fit a model within each subject and we store the vector of estimated coefficients.
dataCoeff=obs2coeffWithin(Y~ ChanL*Lateral*Condition,data=dati,units=~Subj)

From the results above we have that β̂i ∼ (β, Ψ + Σi). Since the model is full-rank in this design (i.e. no
residuals error) and balanced, the distribution is also symmetric around the mean: f(β̂i − β) = f(−(β̂i − β))
(at least component-wise, i.e. for marginal test)

We know, then, how to derive an exact test for H0 : β = 0. Now we use these coefficients as a dataset to test
for multivariate symmetry.

A very important result relies in the fact that the tests are separate, that is, the symmetry under the null
hypothesis is ensured for each element of β whatever is the true mean of the others elements of β.
mod=flipMixWithin(data=dataCoeff,perms=10000,statTest = "Tnaive")
summary(mod)

## Call:
## flipMixWithin(perms = 10000, data = dataCoeff, statTest = "Tnaive")
## 9999 permutations.
##
## est.Su Test Stat tail p-value sig.
## (Intercept)_Tnaive NA Tnaive -3.1020 >< 0.0058 **
## ChanLP_Tnaive NA Tnaive -7.6164 >< 0.0002 ***
## ChanLPO_Tnaive NA Tnaive -5.2511 >< 0.0008 ***
## LateralRight_Tnaive NA Tnaive -1.7162 >< 0.0996
## Conditionf_Tnaive NA Tnaive 0.9595 >< 0.3456
## Conditionh_Tnaive NA Tnaive 4.8141 >< 0.0008 ***
## Conditionn_Tnaive NA Tnaive 4.5430 >< 0.0002 ***
## Conditiono_Tnaive NA Tnaive 6.7913 >< 0.0002 ***
## ChanLP:LateralRight_Tnaive NA Tnaive 0.5942 >< 0.5588
## ChanLPO:LateralRight_Tnaive NA Tnaive 2.4635 >< 0.0234 *
## ChanLP:Conditionf_Tnaive NA Tnaive -0.3815 >< 0.7118
## ChanLPO:Conditionf_Tnaive NA Tnaive -0.7127 >< 0.4800
## ChanLP:Conditionh_Tnaive NA Tnaive -1.2310 >< 0.2270
## ChanLPO:Conditionh_Tnaive NA Tnaive -1.0945 >< 0.2850
## ChanLP:Conditionn_Tnaive NA Tnaive 0.1750 >< 0.8640
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## ChanLPO:Conditionn_Tnaive NA Tnaive 0.2800 >< 0.7914
## ChanLP:Conditiono_Tnaive NA Tnaive 4.5902 >< 0.0002 ***
## ChanLPO:Conditiono_Tnaive NA Tnaive 4.1505 >< 0.0014 **
## LateralRight:Conditionf_Tnaive NA Tnaive 0.9319 >< 0.3518
## LateralRight:Conditionh_Tnaive NA Tnaive 0.1410 >< 0.8876
## LateralRight:Conditionn_Tnaive NA Tnaive 1.6669 >< 0.1138
## LateralRight:Conditiono_Tnaive NA Tnaive 0.5563 >< 0.5940
## ChanLP:LateralRight:Conditionf_Tnaive NA Tnaive -1.1426 >< 0.2640
## ChanLPO:LateralRight:Conditionf_Tnaive NA Tnaive -1.0363 >< 0.3134
## ChanLP:LateralRight:Conditionh_Tnaive NA Tnaive -0.5911 >< 0.5490
## ChanLPO:LateralRight:Conditionh_Tnaive NA Tnaive -2.1793 >< 0.0416 *
## ChanLP:LateralRight:Conditionn_Tnaive NA Tnaive -0.6310 >< 0.5380
## ChanLPO:LateralRight:Conditionn_Tnaive NA Tnaive -1.4425 >< 0.1734
## ChanLP:LateralRight:Conditiono_Tnaive NA Tnaive 1.0884 >< 0.2860
## ChanLPO:LateralRight:Conditiono_Tnaive NA Tnaive -1.0263 >< 0.3234

Since the fitted model within each subject is a saturated one, the effect of each nuisance factor is removed
without errors in the estimates.

p-values for Global effect and factor are computed by NPC methodology.
#Global
npc(mod,trace=FALSE)

##
## comb.funct nVar Stat p-value
## V1 Fisher 30 86.83 0.0002
# colnames(mod@permT)
# Combined by factor
summary(npc(mod,subsets = list(ChanL=1:2,Lateral=3,Condition=4:7,

ChanL_Lateral=8:9,
ChanL_Condition=10:17,
Lateral_Condition=18:21,
ChanL_Lateral_Condition=22:29)))

## Call:
## npc(permTP = mod, subsets = list(ChanL = 1:2, Lateral = 3, Condition = 4:7, ChanL_Lateral = 8:9, ChanL_Condition = 10:17, Lateral_Condition = 18:21, ChanL_Lateral_Condition = 22:29))
## permutations.
##
## comb.funct nVar Stat p-value sig.
## ChanL Fisher 2 13.667 0.0002 ***
## Lateral Fisher 1 7.131 0.0008 ***
## Condition Fisher 4 19.017 0.0004 ***
## ChanL_Lateral Fisher 2 9.099 0.0004 ***
## ChanL_Condition Fisher 8 16.464 0.0446 *
## Lateral_Condition Fisher 4 9.909 0.0224 *
## ChanL_Lateral_Condition Fisher 8 10.416 0.2074

This approach is very general, it works also when we have non-balanced and non-saturated models. For
example we may like to use the values computed on each single trial and not the average. In this case, the
model is not full rank and we have different number of trial in each condition. In this case, the test remains
exact only if we can assume symmetric distribution of the errors. If this is not the case, the test become
approximated. It should be noted, however that usually the speed in convergence to the exact control of the
type I error is faster than for parametric (gaussian) model since the our method becomes exact whenever the
distributions of the β̂i become symmetric (i.e. odd moments converge to zero), while the parametric one is
exact when the same distributions become normal (i.e. both even and odd moments converge to zero).
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Furthermore, the symmetry is the only condition, we still allow for hetheroscedastic errors between subjects.
We also allow for different design matrix between subjects (Xi ̸= Xj). As an extreme and surprisingly result,
we also allow for the error within subject to varies.

3.3 Comparison with parametric Mixed-Model
Compare the previous results with the one of the parametric approach:
library(lmerTest)

## Caricamento del pacchetto richiesto: lme4

## Warning: il pacchetto 'lme4' è stato creato con R versione 4.1.2

## Caricamento del pacchetto richiesto: Matrix

##
## Caricamento pacchetto: 'lmerTest'

## Il seguente oggetto è mascherato da 'package:lme4':
##
## lmer

## Il seguente oggetto è mascherato da 'package:stats':
##
## step
mod_mix=lmer(Y~ ChanL*Lateral*Condition +(ChanL*Lateral|Subj),data=dati)

car::Anova(mod_mix)

## Analysis of Deviance Table (Type II Wald chisquare tests)
##
## Response: Y
## Chisq Df Pr(>Chisq)
## ChanL 81.2681 2 < 2.2e-16 ***
## Lateral 6.0196 1 0.01415 *
## Condition 1200.8786 4 < 2.2e-16 ***
## ChanL:Lateral 7.7555 2 0.02070 *
## ChanL:Condition 74.4535 8 6.346e-13 ***
## Lateral:Condition 0.8502 4 0.93160
## ChanL:Lateral:Condition 2.8455 8 0.94367
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The (parametric) Repeated measures method assumes of the errors, the nonparametric (permutation) does
not.

Mixed model does not make this assumption, but assumes normality and homoscedasticity of the observations.

This could be a relevant point for our data:
dati$residuals=residuals(mod_mix)
p <- ggplot(dati, aes(x=Subj, y=residuals,fill=Condition)) + geom_boxplot()
p
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The variability of the subjects doesn’t not appear homogeneous.

3.4 Contrasts and post-hoc
3.4.1 Post-hoc and Custom contrasts

For this example we restrict the analysis to the comparison Happy vs Neutral.

Let’ now compute the vectors of contrasts (one vector of reach channel, length equal to number of subjects):
Happy vs Neutral
contrasts(dati$Chan)=NULL
contrasts(dati$Condition)=NULL

dati_2cond_6chan=subset(dati,(Condition%in%c("h","n")))
dati_2cond_6chan$Condition=factor(dati_2cond_6chan$Condition)
dati_2cond_6chan$Condition=relevel(dati_2cond_6chan$Condition,"n")

dataCoeff=obs2coeffWithin(Y~ Chan*Condition,data=dati_2cond_6chan,units=~Subj)

colnames(dataCoeff$coeffWithin)

## [1] "(Intercept)" "ChanO2" "ChanP7"
## [4] "ChanP8" "ChanPO7" "ChanPO8"
## [7] "Conditionh" "ChanO2:Conditionh" "ChanP7:Conditionh"
## [10] "ChanP8:Conditionh" "ChanPO7:Conditionh" "ChanPO8:Conditionh"

dataCoeff$coeffWithin contains the estimates of the coefficients for the model for each subject.
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The column Conditionh contains the contrast h-n in Chan01. To get the same contrast in any other channel
we add the column of interaction Conditionh:Chan to the one of Chan01. As an example, to get n-f in
Chan02 we make Conditionh + ChanO2:Conditionh.
Y=dataCoeff$coeffWithin[,7]+cbind(ChanO1=0,dataCoeff$coeffWithin[,8:12])
colnames(Y)=gsub(":Condition.","",colnames(Y))
colnames(Y)

## [1] "ChanO1" "ChanO2" "ChanP7" "ChanP8" "ChanPO7" "ChanPO8"

Analysis: raw and adjusted p-values (min-p procedure)
res=flip(Y,perms=10000)

res=flip.adjust(res)
summary(res)

## Call:
## flip(Y = Y, perms = 10000)
## 9999 permutations.
##
## Test Stat tail p-value Adjust:maxT sig.
## ChanO1 t -1.472 >< 0.1594 0.1594
## ChanO2 t -2.137 >< 0.0438 0.0744
## ChanP7 t -2.449 >< 0.0264 0.0588
## ChanP8 t -3.675 >< 0.0022 0.0056 **
## ChanPO7 t -2.375 >< 0.0322 0.0620
## ChanPO8 t -2.981 >< 0.0060 0.0212 *

To show the results plot intensity colors based on the significance of the adjusted p-values for each channel.
Just for visual purposes, we transform the adjusted p-values by −log10(p):
# install.packages("legit")
library(eegkit)

## Warning: il pacchetto 'eegkit' è stato creato con R versione 4.1.3

## Warning: il pacchetto 'rgl' è stato creato con R versione 4.1.2
# get the a z value from the adjusted p-value for each channel, just for visual purposes:
pvals=getFlip(res,"Adjust:maxT")
rownames(pvals)=gsub("Chan","",rownames(pvals))

# match to eeg coordinates
data(eegcoord)
cidx <- match(rownames(pvals),rownames(eegcoord))

# plot t-stat in 2d
eegspace(eegcoord[cidx,4:5],-log10(pvals[,1]),cex.point = 3,colorlab="-log10(adj-p)",mycolors=heat.colors(4))
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